Selasa, 18 Jun 2013

How Spark Plugs Work




The spark plug is quite simple in theory: It forces electricity to arc across a gap, just like a bolt of lightning. The electricity must be at a very high voltage in order to travel across the gap and create a good spark. Voltage at the spark plug can be anywhere from 40,000 to 100,000 volts.
The spark plug must have an insulated passageway for this high voltage to travel down to the electrode, where it can jump the gap and, from there, be conducted into the engine block and grounded. The plug also has to withstand the extreme heat and pressure inside the cylinder, and must be designed so that deposits from fuel additives do not build up on the plug


Spark Plug


Spark plugs use a ceramic insert to isolate the high voltage at the electrode, ensuring that the spark happens at the tip of the electrode and not anywhere else on the plug; this insert does double-duty by helping to burn off deposits. Ceramic is a fairly poor heat conductor, so the material gets quite hot during operation. This heat helps to burn off deposits from the electrode.
Some cars require a hot plug. This type of plug is designed with a ceramic insert that has a smaller contact area with the metal part of the plug. This reduces the heat transfer from the ceramic, making it run hotter and thus burn away more deposits. Cold plugs are designed with more contact area, so they run cooler.

Spark Plug
The difference between a "hot" and a "cold" spark plug is in the shape of the ceramic tip.
The carmaker will select the right temperature plug for each car. Some cars with high-performance engines naturally generate more heat, so they need colder plugs. If the spark plug gets too hot, it could ignite the fuel before the spark fires; so it is important to stick with the right type of plug for your car.
Next, we'll learn about the coil that generates the high voltages required to create a spark.



Causes of Overheating:

  • Spark plug heat range too hot
  • Insufficient tightening torque and/or no gasket
  • Over-advanced ignition timing
  • Fuel octane rating too low (knock is present)
  • Excessively lean air-fuel mixture
  • Excessive combustion chamber deposits
  • Continuous driving under excessively heavy load
  • Insufficient engine cooling or lubrication






Tiada ulasan:

Catat Ulasan